Search results for " particle physics"

showing 10 items of 360 documents

Modular fluxes, elliptic genera, and weak gravity conjectures in four dimensions

2019

We analyse the Weak Gravity Conjecture for chiral four-dimensional F-theory compactifications with N=1 supersymmetry. Extending our previous work on nearly tensionless heterotic strings in six dimensions, we show that under certain assumptions a tower of asymptotically massless states arises in the limit of vanishing coupling of a U(1) gauge symmetry coupled to gravity. This tower contains super-extremal states whose charge-to-mass ratios are larger than those of certain extremal dilatonic Reissner-Nordstrom black holes, precisely as required by the Weak Gravity Conjecture. Unlike in six dimensions, the tower of super-extremal states does not always populate a charge sub-lattice. The main t…

High Energy Physics - TheoryNuclear and High Energy PhysicsGravity (chemistry)FOS: Physical sciencesF-TheoryTopological Strings01 natural sciencesTheoretical physicsGeneral Relativity and Quantum CosmologyHigh Energy Physics::TheorySuperstrings and Heterotic Strings0103 physical scienceslcsh:Nuclear and particle physics. Atomic energy. Radioactivity010306 general physicsGauge symmetryPhysicsHeterotic string theory010308 nuclear & particles physicshep-thCharge (physics)SupersymmetryF-theoryHigh Energy Physics - Theory (hep-th)lcsh:QC770-798String DualityMirror symmetryParticle Physics - TheoryString dualityJournal of High Energy Physics
researchProduct

Experimental Evidence for an Attractive p-φ Interaction

2021

Physical review letters 127(17), 172301 (2021). doi:10.1103/PhysRevLett.127.172301

:Kjerne- og elementærpartikkelfysikk: 431 [VDP]ProtonGeneral Physics and Astronomy01 natural sciencesHigh Energy Physics - ExperimentALICEscattering [p p][PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]correlation functionNuclear ExperimentPhysicsstrong interactionVDP::Kjerne- og elementærpartikkelfysikk: 431:Nuclear and elementary particle physics: 431 [VDP]VDP::Nuclear and elementary particle physics: 431nuclear matterPHOTOPRODUCTIONParticle Physics - Experimentcorrelation: two-particleQCD SUM-RULES; VECTOR-MESONS; COLLISIONS; PARTICLES; PHOTOPRODUCTIONCOLLISIONSParticle physicsp p: scatteringMesonStrong interactionCorrelation function (quantum field theory)[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Physics and Astronomy(all)530114 Physical sciencessymmetry: chiralQCD SUM-RULES; VECTOR-MESONS; COLLISIONS; PARTICLES; PHOTOPRODUCTION;QCD SUM-RULES0103 physical sciencesPARTICLEScorrelation: two-particle ; symmetry: chiral ; p p: scattering ; scattering length ; Phi(1020) ; coupling constant ; correlation function ; strong interaction ; ALICE ; nuclear matter ; effective range ; experimental results ; 13000 GeV-cms/nucleonNuclear Physics - Experimentddc:530phi meson particle physics ALICE010306 general physicstwo-particle [correlation]Coupling constantchiral [symmetry]010308 nuclear & particles physicsScatteringPhi(1020)coupling constantScattering lengthNuclear matter13000 GeV-cms/nucleonscattering lengthStrong Interactioneffective rangeHigh Energy Physics::ExperimentVECTOR-MESONSexperimental results
researchProduct

IRIDE: Interdisciplinary research infrastructure based on dual electron linacs and lasers

2014

This paper describes the scientific aims and potentials as well as the preliminary technical design of RUDE, an innovative tool for multi-disciplinary investigations in a wide field of scientific, technological and industrial applications. IRIDE will be a high intensity "particles factory", based on a combination of high duty cycle radio-frequency superconducting electron linacs and of high energy lasers. Conceived to provide unique research possibilities for particle physics, for condensed matter physics, chemistry and material science, for structural biology and industrial applications, IRIDE will open completely new research possibilities and advance our knowledge in many branches of sci…

Nuclear and High Energy PhysicsHigh energySC Linac;Neutron source;FEL;Compton source;Advanced accelerators concepts;Particle physicsSettore FIS/07 - FISICA APPLICATA (A BENI CULTURALI AMBIENTALI BIOLOGIA E MEDICINA)Advanced accelerators conceptTechnical designNOAdvanced accelerators conceptsParticle physicSC Linac; FEL; Particle physics; Neutron source; Compton source; Advanced accelerators conceptsInstrumentationFELPhysicsSC LinacSettore FIS/01 - Fisica SperimentaleAdvanced accelerators concepts; Compton source; FEL; Neutron source; Particle physics; SC Linac; Instrumentation; Nuclear and High Energy PhysicsParticle physicsAdvanced accelerators concepts; Compton source; FEL; Neutron source; Particle physics; SC Linac; Nuclear and High Energy Physics; InstrumentationCompton sourceNeutron sourceWide fieldSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Dual (category theory)Free Electron LaserAdvanced accelerators concepts Compton source FEL Neutron source Particle physics SC LinacAdvanced accelerators concepts; Compton source; FEL; Neutron source; Particle physics; SC Linacadvanced accelerators concepts; particle physics; sc linac; compton source; fel; neutron sourceneutron sourcefree electron lasersSystems engineeringFactory (object-oriented programming)Free electron laser
researchProduct

Preliminary magnetic resonance relaxometric analysis of Fricke gel dosimeters produced with polyvinyl alcohol and glutaraldehyde

2017

This work describes the preliminary analysis of Fricke gels dosimeters characterized by a new formulation making use of a matrix of polyvinyl alcohol cross-linked by adding glutaraldehyde and analyzed by means of nuclear magnetic resonance relaxometry. In previous optical studies, these gels have shown promising dosimetric features in terms of photon sensitivity and low diffusion of ferric ions produced after irradiation. In this work, we used a portable nuclear magnetic resonance relaxometer to measure the relaxation times (which are important for dosimetric applications) of these gel materials. For this purpose, we performed a study for optimizing the acquisition parameters with a nuclear…

gelMaterials science02 engineering and technology01 natural sciencesPolyvinyl alcoholchemistry.chemical_compound0103 physical sciencesmedicinelcsh:Nuclear and particle physics. Atomic energy. RadioactivityFricke gelSafety Risk Reliability and QualityradiotherapySettore CHIM/02 - Chimica FisicaDosimetermedicine.diagnostic_testdosimetry010308 nuclear & particles physicsSettore FIS/01 - Fisica SperimentaleMagnetic resonance imaging021001 nanoscience & nanotechnologySettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Dosimetry Gel NMR PVA GTA radiotherapynuclear magnetic resonancepolyvinyl alcoholNuclear Energy and Engineeringchemistryglutaraldehydelcsh:QC770-798Glutaraldehyde0210 nano-technologySettore MED/36 - Diagnostica Per Immagini E RadioterapiaDosimetry; Gel; Glutaraldehyde; Nuclear magnetic resonance; Polyvinyl alcohol; RadiotherapyNuclear chemistryNuclear Technology and Radiation Protection
researchProduct

Observation of light-by-light scattering in ultraperipheral Pb+Pb collisions with the ATLAS detector

2019

This Letter describes the observation of the light-by-light scattering process, γγ→γγ, in Pb+Pb collisions at √sNN=5.02  TeV. The analysis is conducted using a data sample corresponding to an integrated luminosity of 1.73  nb−1, collected in November 2018 by the ATLAS experiment at the LHC. Light-by-light scattering candidates are selected in events with two photons produced exclusively, each with transverse energy EγT>3  GeV and pseudorapidity |ηγ|<2.4, diphoton invariant mass above 6 GeV, and small diphoton transverse momentum and acoplanarity. After applying all selection criteria, 59 candidate events are observed for a background expectation of 12±3 events. The observed excess of events…

Photonheavy ion: scatteringmass spectrum: (2photon)Physics::Instrumentation and Detectorsmeasured [channel cross section]General Physics and Astronomytransverse energy [photon]nucl-ex01 natural sciencesLight scatteringHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)Scattering processPseudorapidities[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Invariant massCollisionsNuclear Experiment (nucl-ex)Nuclear ExperimentNuclear Experimentelastic scattering [photon photon]Physicsphoton: transverse energyproton–proton collisionsLarge Hadron ColliderSettore FIS/01 - Fisica SperimentaleATLAS:Mathematics and natural scienses: 400::Physics: 430::Nuclear and elementary particle physics: 431 [VDP]CERN LHC CollPseudorapidityTransverse momentalight-by-light scatteringLHCchannel cross section: measuredParticle Physics - Experimentrelativistic heavy-ion collisionsjets(2photon) [mass spectrum]Transverse energyCiências Naturais::Ciências Físicas530 PhysicsAstrophysics::High Energy Astrophysical Phenomena:Ciências Físicas [Ciências Naturais]FOS: Physical sciencesATLAS experimentddc:500.2LHC ATLAS High Energy Physicstransverse momentumplanarity[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Relativistic heavy ions530AcoplanarityNuclear physicsscattering [heavy ion]Delbrück scattering0103 physical sciencesStandard deviationNuclear Physics - Experimentddc:5305020 GeV-cms/nucleonSelection criteria010306 general physicsperipheralCiencias Exactastwo-photon [mass spectrum]Integrated luminosityleadScience & Technologyhep-exrapidity [photon]Scatteringbackground:Matematikk og naturvitenskap: 400::Fysikk: 430::Kjerne- og elementærpartikkelfysikk: 431 [VDP]Físicaphoton: rapidityElementary Particles and FieldsHigh Energy Physics::Experimentphoton photon: elastic scatteringmass spectrum: two-photonexperimental results
researchProduct

Mapping nonlinear gravity into General Relativity with nonlinear electrodynamics

2018

We show that families of nonlinear gravity theories formulated in a metric-affine approach and coupled to a nonlinear theory of electrodynamics can be mapped into General Relativity (GR) coupled to another nonlinear theory of electrodynamics. This allows to generate solutions of the former from those of the latter using purely algebraic transformations. This correspondence is explicitly illustrated with the Eddington-inspired Born-Infeld theory of gravity, for which we consider a family of nonlinear electrodynamics and show that, under the map, preserve their algebraic structure. For the particular case of Maxwell electrodynamics coupled to Born-Infeld gravity we find, via this corresponden…

Gravity (chemistry)Physics and Astronomy (miscellaneous)Algebraic structureGeneral relativityFOS: Physical scienceslcsh:AstrophysicsGeneral Relativity and Quantum Cosmology (gr-qc)01 natural sciencesGeneral Relativity and Quantum CosmologyGravitationlcsh:QB460-4660103 physical scienceslcsh:Nuclear and particle physics. Atomic energy. Radioactivity010306 general physicsEngineering (miscellaneous)Metric-affine approachPhysics010308 nuclear & particles physicsNumerical analysisNonlinear theoryPower (physics)Nonlinear gravity theoriesNonlinear systemQuantum electrodynamicslcsh:QC770-798Regular Article - Theoretical Physics
researchProduct

Forward dijets in proton-nucleus collisions at next-to-leading order: the real corrections

2021

Using the CGC effective theory together with the hybrid factorisation, we study forward dijet production in proton-nucleus collisions beyond leading order. In this paper, we compute the "real" next-to-leading order (NLO) corrections, i.e. the radiative corrections associated with a three-parton final state, out of which only two are being measured. To that aim, we start by revisiting our previous results for the three-parton cross-section presented in our previous paper. After some reshuffling of terms, we deduce new expressions for these results, which not only look considerably simpler, but are also physically more transparent. We also correct several errors in this process. The real NLO …

High Energy Physics - Theorydijet: productionNuclear and High Energy PhysicsParticle physicsNuclear TheoryProton[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]splittingFOS: Physical sciencescollinearParton01 natural sciencesColor-glass condensateNuclear Theory (nucl-th)DGLAP equationHigh Energy Physics - Phenomenology (hep-ph)FactorizationfactorizationNLO Computations0103 physical sciencesRadiative transferEffective field theoryradiative correctionlcsh:Nuclear and particle physics. Atomic energy. Radioactivitypartonheavy ion phenomenology010306 general physicsp nucleus: scatteringPhysicsNLO computationshybrid010308 nuclear & particles physics[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th]higher-order: 1Heavy Ion PhenomenologyGluonHigh Energy Physics - PhenomenologyDGLAPHigh Energy Physics - Theory (hep-th)kinematics[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]color glass condensatelcsh:QC770-798
researchProduct

Search for a Stable Six-Quark State at BABAR

2019

Recent investigations have suggested that the six-quark combination uuddss could be a deeply bound state (S) that has eluded detection so far, and a potential dark matter candidate. We report the first search for a stable, doubly strange six-quark state in Upsilon -&gt; S anti-Lambda anti-Lambda decays based on a sample of 90 million Upsilon(2S) and 110 million Upsilon(3S) decays collected by the BABAR experiment. No signal is observed, and 90% confidence level limits on the combined Upsilon(2S,3S) -&gt; S anti-Lambda anti-Lambda branching fraction in the range (1.2-1.4)x10^-7 are derived for m_S &lt; 2.05 GeV. These bounds set stringent limits on the existence of such exotic particles.

:Kjerne- og elementærpartikkelfysikk: 431 [VDP]branching ratio: upper limitElectron–positron annihilationBound stateGeneral Physics and AstronomyBaBar experimentQuarksUpsilon(10355): rare decayUpsilon(10355): electroproductionUpsilon(10020): branching ratioparticle: exoticupsilon mesons: hadronic decay01 natural sciencesdecayHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)Upsilon(10020): electroproductionBound state[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]PhysicQCQBExotic particlesPhysicsnew physics: search forSettore FIS/01 - Fisica Sperimentaleelectron positron: colliding beamsdetector limits decay:Nuclear and elementary particle physics: 431 [VDP]ParticlesDark matter (Astronomy)Confidence levelbaryon: dark matterUpsilon(10020): rare decayBranching fractionMatèria fosca (Astronomia)QuarkParticle physicsDark matterFOS: Physical sciencesLambda: pair productionelectron positron: annihilationPartícules (Matèria)NOPhysics and Astronomy (all)BABAR experiment0103 physical sciencesAtomic physicUpsilon(10355): branching ratio010306 general physicsdetectorBranching fractiondark matter: massState (functional analysis)stabilitySLAC PEP StorHEPA-stableBaBarElementary Particles and FieldsHigh Energy Physics::Experimentlimitsexperimental results
researchProduct

High-gradient testing of an $S$-band, normal-conducting low phase velocity accelerating structure

2020

A novel high-gradient accelerating structure with low phase velocity, $v/c=0.38$, has been designed, manufactured and high-power tested. The structure was designed and built using the methodology and technology developed for CLIC $100\text{ }\text{ }\mathrm{MV}/\mathrm{m}$ high-gradient accelerating structures, which have speed of light phase velocity, but adapts them to a structure for nonrelativistic particles. The parameters of the structure were optimized for the compact proton therapy linac project, and specifically to 76 MeV energy protons, but the type of structure opens more generally the possibility of compact low phase velocity linacs. The structure operates in S-band, is backward…

Nuclear and High Energy PhysicsPhysics and Astronomy (miscellaneous)Field (physics)[PHYS.PHYS.PHYS-ACC-PH]Physics [physics]/Physics [physics]/Accelerator Physics [physics.acc-ph]cavityType (model theory)01 natural sciencesp: accelerationLinear particle accelerator0103 physical scienceslcsh:Nuclear and particle physics. Atomic energy. Radioactivity010306 general physicsReview ArticlesPhysics010308 nuclear & particles physicsvelocity: lowPulse durationSurfaces and Interfaceslinear acceleratorgradient: highAccelerators and Storage Ringsvelocity: phasePulse (physics)particle: nonrelativisticDistribution (mathematics)lcsh:QC770-798Atomic physicsPhase velocityEnergy (signal processing)performance
researchProduct

Causal representation of multi-loop Feynman integrands within the loop-tree duality

2021

The numerical evaluation of multi-loop scattering amplitudes in the Feynman representation usually requires to deal with both physical (causal) and unphysical (non-causal) singularities. The loop-tree duality (LTD) offers a powerful framework to easily characterise and distinguish these two types of singularities, and then simplify analytically the underling expressions. In this paper, we work explicitly on the dual representation of multi-loop Feynman integrals generated from three parent topologies, which we refer to as Maximal, Next-to-Maximal and Next-to-Next-to-Maximal loop topologies. In particular, we aim at expressing these dual contributions, independently of the number of loops an…

High Energy Physics - TheoryPhysicsNuclear and High Energy PhysicsParticle physics010308 nuclear & particles physicsDuality (mathematics)PropagatorDual representation01 natural sciencesAlgebraHigh Energy Physics - Phenomenologysymbols.namesakeIntegerSimple (abstract algebra)Perturbative QCD0103 physical sciencessymbolslcsh:QC770-798Feynman diagramlcsh:Nuclear and particle physics. Atomic energy. RadioactivityGravitational singularityScattering Amplitudes010306 general physicsRepresentation (mathematics)Duality in Gauge Field TheoriesJournal of High Energy Physics
researchProduct